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Abstract 

Traditional smoke detectors can delay fire detection in many scenarios when smoke must travel 
long distances, leading to damage to belongings and more lost lives as flames quickly become 
harder to control. This research presents EmberVision, a low-cost vision-based fire and smoke 
sensor that uses machine learning on microcontrollers to perform detection with minimal power 
consumption, no security concerns, and at a low cost. A unified fire and smoke dataset was 
created from 3 sources with 17,000 images, which was then used to train and optimize a 
scaled-down MobileNetV2-based binary classification CNN. The model achieved 94.4% 
accuracy pre-quantization, and after fine tuning with quantization aware training (QAT) and 
applying dynamic range quantization it maintained 90.5% accuracy with an 82% reduction of 
size to 616KB. A custom PCB module was then designed to run the model, consuming only 
65mA during operation and with easy connectors to integrate it into a larger device. This module 
demonstrates the feasibility of an inexpensive visual early fire detection solution for the home 
that was traditionally unavailable but also acts as an blueprint of a way to deploy distributed 
machine learning on low-power devices to bring machine learning back from the cloud. 

 

Introduction 

In 2023 alone, Fire damage caused 10,190 civilian injuries (www.nfpa.org) and $11 billion in 
property damage. Having an early warning of flames or smoke in the critical moments before a 
traditional detector can trigger, especially if no people are present, can prevent damage and the 
spread of fire – saving property, lives, and first responders. 
 

This project aims to create a miniature visual fire sensor module that will use a CNN with 
TensorFlow Lite running on an ESP32 microcontroller to recognize flames and smoke as soon as 
the fire starts, and notify peripherals connected to it. The project will start with curating a dataset 
and creating a larger scale model based on MobileNet and FireNET and then optimizing and 
simplifying the model architecture by removing layers to fit in the 1 MB size limit necessary to 
inference in the microcontroller memory. Compared to the few previous solutions that serve a 
similar function, the sensor will not require internet access, outside server utilization or 
subscriptions, or large amounts of power, and will cost a fraction of the price.   
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Methodology  
The goal of this project is to create a visual fire and smoke sensor using machine learning 
principles on microcontrollers. While traditional smoke detectors are used everywhere, they can 
take time to trigger in scenarios when smoke must travel a longer distance to reach them, 
allowing the fire to spread further than it would if a person were present to acknowledge the 
flames and extinguish them.  

This is where a visual approach has merit, in areas where flames are not expected from common 
household candles or fireplaces, a sensor can detect unexpected ignitions in an instant and set off 
an early alert before extra damage is caused. Implementations of this technique have been proven 
on security cameras and other systems; each requiring setup or money that normal individuals 
would not choose to spend. In addition, these systems either use more power than necessary for a 
home or offload the video processing to outside servers, creating security vulnerabilities or 
requiring subscription fees.  

IEEE has concluded that “Visible spectrum video-based fire detection using non-stationary 
cameras has been an overlooked research problem.” [11] By creating a simple sensor board with 
a camera with a microcontroller running a fire detection model locally that costs less than $10, 
this project will make early detection easily accessible, paving the way for companies and smart 
home devices to utilize it. In addition, this sensor is completely independent, having no reliance 
on cloud services, subscriptions, or internet connection. By bringing the inferencing back to the 
device itself, this sensor could inspire a paradigm shift to devices that don’t require subscriptions 
and have a smaller carbon footprint because of their low power draw. 

 

Fig. 1, The workflow for processing imagery and detecting objects. 
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Objective I. Create a unified Fire and Smoke image dataset 

Multiple Fire and Smoke detection datasets already exist, but each are relatively small. First, a 
unified dataset was created that contained a single standard for labels and many diverse samples. 

 

GAIA D-Fire [5] 

Very large dataset of over 10,000 tagged and annotated images of Fire, Smoke, a combination, or 
neither. This is the primary source of data due to its well-organized file structure and large size. 

DataCluster Labs Fire and Smoke Dataset [10] 

A dataset composed of real images of fire that were captured on smartphones between 2020 and 
2021. With over 7000 images in 400 different environments, this dataset has the breadth of 
images necessary to train a model for indoor and outdoor detection and was a secondary source. 

DeepQuestAI Fire-Smoke-Dataset [3] 

A simple dataset, with 1000 color images each of Fire, smoke, and neutral environments. This 
dataset is commonly used with ResNet or CNNs to achieve over 85% accuracy. Data from this 
set was employed for validation and real-life testing as many samples are very high-resolution 
images. 

 

Fig. 2, Source image samples 
 
Class Distribution 
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To ensure training efficiency and guarantee that the model is not overly biased to one outcome, 
the dataset has been curated to have roughly a 50/50 distribution of classes. To make sure that 
there will be the largest amount of data available for testing, the model has not been slimmed 
down to achieve to those exact proportions, it is at an 87:100 ratio with a light bias towards 
images with fire. This could ultimately serve as a benefit as it is better for the sensor to overly 
sensitive than not sensitive enough, and the sensitivity of the model will ultimately be able to be 
tuned during training and in the final sensor by averaging over time. 

The dataset has already been split, 80% for training, 20% for testing, and an additional validation 
dataset has been created with about 1000 images that will be used to test on the final board. 

 

Fig. 3, class distribution of training and testing datasets 
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Fig. 4, distribution of bounding box positions, larger bubbles represent larger boxes 
 

The dataset contains images with varying environments, both indoor and outdoor, each having 
varying lighting and weather. The images also have many different sizes of fire, or even multiple 
ignition sites throughout the image. The position of large flames tends to be in the center of the 
image, but many large fires are not fully enclosed by their bounding boxes, and cover most of the 
image. The CNN model architecture will have many convolution and pooling layers that will 
ultimately cause the model to learn general fire features that are location-independent in the 
image. 
 

Data Labeling 

For simplicity, the model will only perform binary classification and return one of 2 labels, “0” 
or neutral environment, and “1” or problem environment (fire or major smoke), for the entire 
image. Both the D-Fire and Data Cluster Labs datasets use COCO/Yolo labelling, meaning that 
instead of one label for the entire image, they have multiple bounding boxes with labels. In 
addition, both datasets include 3 effective classes, neutral (no boxes), smoke (boxes with label 
0), or fire (boxes with label 1).  

To remedy this, a unique function was created for each input dataset that ingests COCO and Yolo 
labels, and outputs the images into a basic folder structure based on their newly decided labels 
using a set of rules. If an image has any bounding boxes labelled fire, it will be labelled as 1 
(problem environment). If an image has only bounding boxes labelled smoke, the area of the 
largest bounding box will be calculated, and the image will only be labelled as 1 (problem 
environment) if it covers 50% or greater of the image.  
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This is to prevent the model from being overly sensitive to things like clouds and fog in an 
image, and to ensure that the CNN will be primarily learning features from flames - which pose 
the most severe threat – without completely losing classification abilities for severe smoke 
plumes. 

 

Objective II. Train a model to distinguish between scenes with fire or smoke, and neutral 
environments. 

The following requirements of the model were set: 
-​ >90% accuracy for binary classification of Fire and Neutral environments 
-​ Below 1 MB final model size 
-​ TensorFlow Lite Runtime compatibility 

To accomplish this task, multiple compact footprint models from the EfficientNet and 
MobiletNet families were trained and compared. The EffecientNet architecture was intriguing 
due to its compound scaling methodology that reduces the overall computational load of 
inferencing based on the user’s requirements. [16] The MobileNet family was also used due to its 
widespread connection with TinyML and TensorFlow Lite on the ESP32 and similar boards, and 
because of its use of depth wise separable convolutions and width and resolution scalers for 
decreasing the number of parameters. [13] 
 

Each model was trained using transfer learning for the top layers of the model, with the lower 
convolutional layers retaining ImageNet weights. An initial set of training conditions were 
chosen for the models with a commonly chosen learning rate and activation function, both of 
which were tweaked over the course of testing. The camera used with most ESP32 boards can 
capture still images up to a 1600x1200 pixels, but 96x96 was chosen as the model input size 
since it was the largest feasible size that could be used if the model would possibly fit into 
allocated memory. 
 

After training, the models were converted into TensorFlow Lite RT model format without 
quantization to reduce additional variables. 

​ 6​  



Visual early Fire-detection sensor with Machine Learning on Microcontrollers, Ari Stehney 

 

Objective III. Minimize the model to <1MB for running on a microcontroller 

Once trained, the model will need to be converted to run on the microcontroller. Tensorflow 
provides solutions for exporting to the “tflite” (LiteRT) model format that can then be compiled 
or dynamically loaded by the microcontroller. For this project, the ESP32-S3 microcontroller has 
been chosen as a target because it is well supported and has a large community surrounding it, 
meaning that library support is very common. Nearly all CNN models, including all of those 
tested, are larger than the available memory on the ESP32, meaning that they will require 
quantization to be used at all for inferencing. Quantization is the process of truncating or 
rounding data in the weights or activations of neural networks in conjunction with scaling so that 
they can be stored as smaller data types, decreasing the memory and storage footprints of the 
model with a minimal amount of precision lost. 

At first, after the model was trained, it would undergo a conversion to Tensorflow LiteRT model 
format which included various types of quantization optimizations. Any model produced with 
these techniques would produce results that had accuracies as low as 15% and were often heavily 
biased to one classification regardless of input. This result was extremely surprising and despite 
deep debugging efforts, the causes are still largely a mystery. One possible explanation is that, 
due to the addition of data augmentation and preprocessing layers to the model, the quantization 
was not accounting properly for the change in range of incoming data and causing larger than 
normal losses of precision. Along with that, some testing code contained two pre-processing 
passes, although once one was removed the accuracy only increased by a few percent. 
 

To solve these issues, the training and quantization process was completely rewritten. During the 
quantization process, it is common to see a bias towards the majority class. To rule out that issue, 
the model was trained using class balance weights that were calculated based on the training 
dataset to account for the higher number of samples for fire situations. Next, the model was 
trained using a 2-stage approach with a set of normal fitting epochs and a second set of 
quantization-aware fitting (QAT) epochs. The QAT process [14] inserts dummy quantization 
operations into the forward pass that simulate the effect of quantization during the forward-pass 
of training, allowing the model to learn from the noise induced through rounding and clipping.  
 

 

Fig. 5, QAT setup code 
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Fig. 6, QAT fitting, credit: PyTorch.org 
 

This allows the model to update the weights using a gradient that retains full-precision FP32 data 
types. After the QAT model was tuned, it was then quantized normally using the experimental 
converter mode and a representative dataset with an equal split of samples between classes.  
 

Inferencing 
To run the model on the ESP32 microcontroller, a basic firmware was built using ESP-IDF and 
Tensorflow Lite, based off the existing person-detection example. This code was chosen as a 
base as it was built in similar constraints and performed binary classification using an older 
MobileNet architecture, leading to less new code having to be written. 
 

After the model was quantized and converted to the flattened TFLite format, it was again 
converted into a C++ header file that held the model data as a byte array. The ESP32 contains 
4MB of flash storage that can be used as IROM (instruction read-only memory, but only 512KB 
of IRAM (instruction random-access memory). The model data byte array is 8-bit aligned and 
stored as a constant, which causes the compiler to place it into the IROM in a way that ensures 
optimal 64-bit access. While this method allows the model to be stored, the TensorFlow lite 
interpreter still needs to allocate writable memory space in RAM for the inputs and activation 
tensors. The memory required for the inferencing “tensor arena” when using the fire detection 
model is larger than the internal RAM of the ESP32 S3, so the MMU virtual-addressing features 
must be used to allow the firmware to allocate this tensor arena in external PSRAM 
(pseudo-static random-access memory), which is 4-8 times larger than IRAM.  

 

Fig. 7, Tensor arena allocation code 
Once the model inferencing memory has been allocated, the code creates an operation resolver 
that contains only the mathematical operations necessary to inference the model to save on 
memory space. 

The firmware also must read from the camera and convert the pixel data types into the required 
range and precision to be used as model inputs. This and the rest of the firmware functionality is 
all handled through a variety of helper functions that are in the project GitHub. 

 

Objective IV. Design a sensor module with a custom PCB that can be incorporated into other 
devices. 
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While the model provides the core detection functionality and can run on development boards 
easily, deploying it in a scalable way requires a cheap dedicated sensor module. To this end, we 
designed a minimalistic breakout board that can perform inferencing and be integrated into other 
products through a serial interface. Because of the choice to use the ESP32 microcontroller, a 
large selection of open-source development board schematics for it are available online, and the 
schematic released by Espressif for the ESP32-S3-EYE was used as a reference. After creating 
the schematic, the PCB design was made in EasyEDA Pro.  

The board contains the ESP32-S3-MINI-1U-N4R2 module which packages the CPU, PSRAM, 
and flash required while saving on cost and reducing complexity. To aid in development of the 
model and debugging, the board has a USB-C connector for programming, a JTAG/serial 
debugging header, a 4-pin serial interface for setting detection thresholds and reading the 
detections, and 2 RGB status LEDs for status and visual diagnostics.   

 

 

Fig. 8, EmberVision module 3D Renders 
 

 

Fig. 9, EmberVision module PCB layout 
 

The most intricate part of the PCB design is the power regulation circuitry, which takes the 
power inputs from either set of headers or the USB-C connector and accurately regulates them to 
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the 3 required voltages for the SoC and CSI camera (3.3v, 2.8v, 1.2v), while ensuring that no 
current is back fed into the USB host when the module is integrated into a product. 
 

 

Fig. 10, EmberVision module schematic 
 

For prototyping, the module was produced by JLCPCB and cost roughly $175 for 5 units fully 
assembled. This cost is heavily inflated because of the minimum order quantity of some 
components on the board, as well as the PCB production fees for low quantity orders. In 
addition, roughly half-way through the project, the US increased import tariffs from all countries 
including China to 145%, and then consequently decreased them back to 55%, drastically 
increasing the cost of production overhead of low-cost and low-quantity boards like this in 
general.  

 

Item Cost 
5x 4-layer PCB with assembly $172.65 
Shipping $41.27 
Sales & use tax $9.83 
Import taxes $86.63 
Total $310.68 ($62 per board) 

 
Fig. 11, Prototype production pricing 

 

In mass production, the cost of the board would likely drop to $10-$15, placing it far below the 
cost of any AI fire-detection security camera system, but above the cost of extremely 
inexpensive short-range infrared fire sensors. With this simple breakout board, it is easy for 
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companies to use the model in a consumer product and benefit from the low power consumption 
and increased complexity.  

 

 

Results and Analysis 

After training but before quantization, five-hundred unseen sample images were inferenced 
through each model, and the accuracies and calculated post-quantization memory footprints were 
compared. 

 

Fig. 12, Comparison of model accuracies and sizes  
 

After testing we can see that the least complex EffecientNet models delivered low accuracy and 
inconsistent results during testing while being much larger than the maximum size threshold, 
even when quantized. It is important to note that this is likely due to issues with the 
transfer-training implementation that could be improved with more research instead of 
fundamental issues with the EffecientNet architecture, but it was eliminated from further testing 
due to its size. MobileNet v1 had acceptable accuracy results of 85.4% after 15 epochs of 
training where it reached a plateau. By changing the model parameters to  (resolution ρ = 1. 00
scaler) and  (width scaler), the minimum recommended, it was possible to reach a α = 0. 25
quantized model size of 3.4MB which is still too large. The resolution scaler was left at 1.00 
because it caused a large drop in accuracy during testing and did not cause a significant drop in 
model size.  
 

MobileNet v2 builds on the architecture of previous MobileNets and replaces residual 
connections with inverted residual blocks and linear bottlenecks [15], leading to a drastically 
decreased parameter count. With a  (resolution scaler) and  (width scaler), it ρ = 1. 00 α = 0. 35
was possible to achieve a pre-quantization accuracy of 94.4% on a model that is 616kb after 
quantization.  
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Fig. 13, Transfer learning training graphs for scaled MobileNet v2 model with final parameters 
 
MobileNet v2 meets all requirements and performs well despite the low-resolution input, but 
during testing on real-world images a few common trends of incorrect classifications appeared. 
After analysis, they do not seem to create any major concerns about the real-world use of the 
model. 
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Fig. 14, Sample predictions on testing dataset images 

 
Fig. 15, Common misclassifications 

 

Most incorrect classifications are due the model having a lack of sensitivity to smoke, and 
oversensitivity to high contrast dark images with bright spots. These quirks mostly manifest 
themselves in smoke plumes going undetected, likely due to the choice to only include smoke 
images where the bounding box covered at least 50% of the image when preprocessing data. The 
benefits of the current methodology outweigh the minimal consequences. Images taken at night, 
particularly from cameras facing outdoors, tended to be classify as fire when there were visible 
streetlights or bright patches. This issue is expected and likely will not pose a real problem since 
this sensor is primarily for early warning and is only expected to be useful in lit areas.  
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Fig. 16, Samples of misclassifications due to dark images 
 

After the scaled and modified MobileNet v2 model was selected, it was trained again using the 
Quantization Aware Training techniques documented above and quantized. Four versions with 
different types of quantization and with/without the Quantization Aware Fine-tuning were 
generated and their accuracies are shown below: 

 

Fig. 17, Results of models with varying quantization 
 

The quantization-aware model with dynamic range quantization (mixed FP16 and INT8, 
mobilenetv2_q_f16) was used as it both fits the size constraints and meets the requirements for 
accuracy. Dynamic range quantization likely performs better because, while it quantizes the 
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weights of the model to 8-bit integers, the activations are still calculated as floating-point values, 
reducing the accuracy loss while still optimizing the memory footprint dramatically.  

Utilizing Quantization Aware Training with proper class-balance and dynamic range 
quantization, the optimized model only showed a 3.9% drop in accuracy despite a size decrease 
of 82%. When compared to larger scale fire detection models using YOLOv9 architecture [17], 
this model requires 95.6% less memory during inferencing. 
 

While the 90.5% accuracy when using the final model is impressive considering the memory 
constraints, it is certainly possible to optimize the training process more and introduce additional 
layers to preprocess the input images so that the model is better able to differentiate between 
neutral and fire scenes. Scenes containing smoke and clouds are very challenging, and in the 
future, it may make sense to create a model that has 3 output classes (fire, smoke, and neutral) so 
that it is able to learn the unique features of smoke separately from fire. If research of this project 
were to continue, the most important change would likely be to shift the target from a 
microcontroller-based platform to a more powerful microprocessor-based platform not dissimilar 
from the Raspberry Pi. This would allow for a larger model with more sophisticated architectures 
like EffecientNet to be used, and if designed well would not require much more power or a larger 
board. 

 

Hardware Results 
Due to some minor production issues, the fire sensor boards produced were manufactured with a 
different version of the ESP32 module that did not contain any PSRAM. As discussed in the 
methodology section, this is key to loading and running models that are larger than the internal 
memory like the one created. The board functionality was tested and demoed with a simpler 
model that performed face detection that was a drop-in replacement for the fire detection model 
but is slightly smaller, and all features worked as expected. If tariffs and time constraints had not 
been as large of a factor, it would have been possible to produce a second round of prototype 
boards with this one issue fixed.   

 

 

Fig. 18, The first prototype board 
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Power consumption was tested using a bench power-supply with the prototype boards and the 
substituted model. At idle it consumes roughly 10 mA (WiFi and Bluetooth disabled), when it is 
actively capturing and processing frames the power consumption peaks at about 65 mA. These 
figures are not perfectly accurate but demonstrate the energy efficiency possible with 
microcontrollers. 
 

Instead of using the sensor boards, the model was tested using the exact same inferencing 
firmware on a ESP32-S3-EYE development board and worked as expected. This board perfectly 
simulates the expected performance of the EmberVision board as it uses an identical camera but 
also has the PSRAM that the first prototypes were lacking.  
 

When testing with two printed images, one of a fire and one of a neutral environment, the 
predicted result consistently fluctuated immediately after the board experienced fast panning and 
tilting. This is likely due to the camera having poorly tuned contrast and potentially 
non-functional auto-white-balance and autofocus features, leaving it subject to extreme motion 
blur. This could be fixed in future firmware updates, but due to the limited time scope of the 
project it was not completed.   

 

Conclusion 

The goal of this project was to create a miniature visual fire sensor module and a lightweight 
CNN model to detect fire before it spreads and prevent damage that would have traditionally 
resulted with smoke detectors. Existing solutions range from large complex security camera 
systems with AI fire detection features that can cost thousands of dollars and require consistently 
high energy usage, to infrared fire detection sensors that only detect a small area. This project’s 
niche is in that the sensor will not require internet access, outside server utilization, subscriptions 
or large amounts of power, and will cost a fraction of the price.  
 

After training and minimizing a model to make it suitable to run within tight memory constraints 
that could still achieve 90% accuracy, we successfully developed a board that could run it that 
had a low cost and used minimal amounts of power. With the ease of use and low cost to 
integrate this module in products, it would be plausible to use this module in indoor home 
security and monitoring devices, public safety monitoring, and large swarms of sensors to watch 
the spread of wildfires or flames in buildings and provide early insights and warning to first 
responders. 
 

This research shows the impact of effects like Quantization and QAT, as well as scaling 
techniques at decreasing the footprint of models in a way that allows them to still complete their 
desired tasks. This project also highlights the fact that older and simpler CNN architectures like 
MobileNet and EffecientNet still have a large place in computing, despite the rise of large and 
complex transformer-based models to combat exponentially increasing computational demands 
of our society. 
 

For the smart home industry, this research paves the way for a new paradigm of distributed 
machine learning for interpretation of data. Most smart home devices released today include 
some functionality that relies on underlying machine learning models that are run remotely on 
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power-hungry servers, widening carbon footprints and introducing security vulnerabilities. With 
a model like this sensor, smart home devices could operate autonomously from outside services 
with improved security, low power use, and less operational costs in the form of subscriptions. 
 

Along with these findings, there have also been some critical lessons learned. The biggest is that 
quantization strategy should be considered at all steps of the training process, not as an 
afterthought. It is an extremely sensitive step and can make or break any existing model, fully 
optimizing it almost always requires additional steps that may seem unrelated. Next, it is 
important to remember that dataset balance is key in all steps, not just training. An unbalanced 
dataset will hurt the model’s accuracy, but it will also skew the accuracy numbers and make 
quantization much more difficult.  

 

Future Work 

The biggest question that is left throughout this entire process is how to handle the detection and 
classification of smoke. There are many solutions for indoor smoke detection already, but 
mastering a camera-based solution could help with widespread detection in large indoor rooms 
like airplane hangars or in outdoor industrial scenarios.  
​

This model is accurate with large dark plumes of smoke, but in testing consistently missed 
lighter shades, and due to the low resolution, the camera will only perform worse the larger area 
it has to cover. In the future, it would be interesting to approach this project again with new goal 
to create a similar sensor using a higher resolution camera and a more powerful arm-based SoC, 
allowing for more sophisticated models using EffecientNet or newer architectures like VGG nets 
and huge input sizes. The processing power of the current board is less of a restriction than the 
small amount of memory. 
 

This kind of hardware could also be applied to other scenarios that were not discussed. 
Companies like FLIR [18] are using thermal cameras to detect traffic incidents and monitor 
waste and recycling plants, but the hardware is expensive. Other companies like Kami and 
independent researchers from Tianjin University [19] are using security camera systems to 
perform fall detection for the elderly. This sensor or a future derivative could be used as an 
inexpensive platform to perform those tasks with similar benefits as it was intended to bring for 
with fire detection. 
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